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THE INFLUENCE OF ADHESIVE BONDLINE THICKNESS
IMPERFECTIONS ON STRESSES IN COMPOSITE JOINTS

Hyonny Kim
School of Aeronautics and Astronautics, Purdue University,
West Lafayette, Indiana, USA

Adhesively-bonded joints can have spatial variations in bondline thickness with
respect to their overlap length. Assumptions pertaining to shear-lag and adherend
transverse shear deformation are used to compose a governing differential equa-
tion that permits any mathematical function to be used for representing the var-
iation in bondline thickness, ta(x). Finite Difference solution techniques are
employed to solve this equation, and it is shown by a series of case study example
calculations that the adhesive shear stress changes significantly for deviations
about a baseline, uniform thickness, configuration. It is also shown that for cases
when the gradient in bondline thickness is small, simple closed-form solutions
developed strictly for uniform thickness joints can provide reasonable accuracy.
Numerical results are summarized as ‘‘stress concentration factor’’ curves,
allowing quick estimation of the upper and lower bounds of normalized peak shear
stress in joints having varying degrees of thickness imperfection.

Keywords: Stress analysis; Varying bondline; Thickness defect; Composite bonding;
Joint design

INTRODUCTION

An analysis is presented that predicts the shear stress in an adhe-
sively bonded composite joint having continuously varying bondline
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thickness. Varying bondline thickness can occur during the manu-
facture of joints, particularly for thin adherends that are relatively
flexible in bending, and in cases when blind assembly is involved. In
most cases, the source of this problem is due to difficulties that can be
encountered in applying proper fixturing to the parts during adhesive
cure. A common scenario is one where the bondline thins at one or
both ends of the overlap, i.e., it ‘‘pinches off.’’ An example of pinch-off is
shown in Figure 1. This pinch-off at the ends of the bond overlap is
particularly undesirable since the thinner adhesive layer results in
higher adhesive shear stress exactly in the location where the highest
shear stress already exists.

It is desirable to have an analytical procedure to predict the effect of
thickness variation on the shear stress in the adhesive. Such an
analysis is useful, particularly for design engineers, when evaluating
the effects of bond thickness control (e.g., during manufacture) on joint
performance. Classical analyses, based on shear-lag, have been
developed to predict the adhesive shear stress in joints of uniform
bond thickness [1, 2]. Improvements to the classical theory include
accounting for plasticity in the adhesive prior to failure [3], predicting
peel stress in single-lap joints [4�6], and allowing for transverse
(through-the-thickness) shear deformation of the adherends [7]. This
latter improvement is an important factor to include in the analysis of
bonded polymer matrix composites since the transverse shear mod-
ulus of these materials, relative to the in-plane Young’s modulus, is
generally much smaller than for isotropic materials.

FIGURE 1 Pinch-off in glass=epoxy adherends bonded with FM 73 adhesive.
Adherend thickness is 0.89mm. Adhesive thickness varies from 0.04mm at
ends to 0.15mm at center of bondline.
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To the author’s best knowledge, there are no theoretical works that
rigorously accommodate a varying bondline thickness during their
derivation. Hart-Smith [3] includes a discussion of pinch-off and flar-
ing (which is the opposite of pinch-off) at a qualitative level. Most
studies investigating the effect of bondline thickness are limited to
joints of uniform thickness [5, 8�11]. Gleich et al. [8] and Li et al. [9]
have shown by numerical analyses that the shear and peel stresses are
not uniform through the adhesive thickness, particularly at the ends of
the joint overlap. To address this thickness-wise variation, Kline [10]
presented a general joint analysis theory that predicts adhesive shear
and peel stresses by assuming a linear variation of these stresses
through the adhesive. Additionally, Wang and Rose [11] present com-
pact solutions to predict the complex stress distribution, including the
singularity stresses existing at the ends of a joint. Joints having
thickness variation have been analyzed numerically by Rispler et al.
[12]. This work focused on internally tapered adherends which result
in gradually larger adhesive thickness at the overlap ends.

The focus of this article is the prediction of shear stress in the
adhesive due to continuously varying bondline thickness in the over-
lap length direction of the joint. While this analysis is based on shear
lag assumptions and therefore only predicts adhesive shear stress, it
can be considered as a nominal solution on top of which refinements,
or corrective solutions, can be added.

THEORY

The analysis presented in this paper is restricted to cases where the
joint is either in a symmetric double-lap configuration, or the adher-
ends are supported so that out-of-plane bending is restricted. As the
formulation is based on shear-lag theory, only shear stress in
the adhesive is predicted, and not peel stress. A modified version of the
transverse shear deformation correction introduced by Tsai et al. [7]
has been incorporated in the present theoretical development, and the
general procedure by which transverse shear flexibility is accounted
for is credited to these authors.

Notation that is used to describe the joint is indicated in Figure 2.
The upper adherend shown in the figure will be referred to as the
outer adherend, whereas the lower is referred to as the inner since, in
the double-lap configuration, this adherend would be surrounded on
both sides by outer adherends.

A second-order differential equation with nonconstant coefficients is
to be derived that describes the transfer of load from one adherend to
the next. The derivation of this equation assumes the following:
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1. symmetric double-lap or supported single-lap joint configuration,
2. adherends have constant thickness,
3. uniform shear strain profile through the adhesive thickness,
4. adhesive carries only out-of-plane shear stresses,
5. linear elastic material behavior, and
6. small angles resulting from bondline thickness variation.

The in-plane displacement profile in each adherend, uoðyoÞ and
uiðyiÞ, are shown in Figure 3. Note that these profiles account for
transverse shear flexibility and, therefore, the displacements at the
adherend-to-adhesive interfaces, uoa and uia, are not necessarily the
same as the corresponding displacements at the outer adherend free
surface, uos, and inner adherend center (or free surface for supported
single-lap case), uic. For adherends with no shear flexibility, there will
be uniform displacement through the adherend thickness, as indicated
by the dashed-line profile in Figure 3.

In a modification to the treatment by Tsai et al. [7], the assumption
is made that the transverse shear stress varies quadratically through
the thickness of the adherends, as is shown in Figure 3. Note as per
assumption 6 above, that the thickness of the adherends, along the yo
and yi axes directions, are to and ti. This assumed profile will be used to
express the in-plane stress resultants, To and Ti, carried by the outer
and inner adherends, respectively. The transverse shear stresses to
and ti in the outer and inner adherends are

to ¼ ta 1� 2yo
to

þ y2o
t2o

� �
ð1Þ

FIGURE 2 Varying bondline thickness joint geometry for double-lap or
supported single-lap joint.
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and

ti ¼ ta
y2

i

t2i
: ð2Þ

In Equations (1) and (2), ta is the shear stress in the adhesive, and it
is assumed that ta is uniform through the thickness of the adhesive as
per assumption 3. to and ti are the thickness of the outer and inner
adherends, respectively. yo and yi are local coordinate systems as
defined in Figure 3.

The shear strains in the outer and inner adherends can be
expressed as

go ¼
duo

dyo
¼ to

Go
ð3Þ

and

gi ¼
dui

dyi
¼ ti

Gi
; ð4Þ

where Go and Gi are the transverse (interlaminar) shear moduli of the
adherends. Integrating Equation (3) from 0 to yo and recognizing that
at yo¼ 0, uo¼uoa, the in-plane displacement in the outer adherend is
determined:

uoðyoÞ ¼
ta
Go

yo �
y2o
to

þ y3o
3t2o

� �
þ uoa: ð5Þ

Similarly, integrating Equation (4), with ui¼uia at yi¼ ti, the in-
plane displacement in the inner adherend is

uiðyiÞ ¼
ta

2Giti

y3
i

t2i
� ti

 !
þ uia: ð6Þ

The stress resultants carried by the outer and inner adherends can
now be calculated.

To ¼
Z to

0

sodyo ¼
Z to

0

Eo
duo

dx
dyo ¼ Eoto

duoa

dx
þ dta

dx
� to
4Go

� �
; ð7Þ

Ti ¼
Z ti

0

sidyi ¼
Z ti

0

Ei
dui

dx
dyi ¼ Eiti

duia

dx
� dta

dx
� ti
4Gi

� �
; ð8Þ

where so and si are the in-plane longitudinal stresses, and Eo and Ei

are the Young’s moduli for the outer and inner adherends, respectively.
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A relationship between the adhesive shear stress ta and the load in
the outer adherend To can be written by performing a force balance on
the elemental slice of outer adherend shown in Figure 3:

ta ¼ dTo

dx
: ð9Þ

Another relationship important to this derivation is the global force
balance through the entire joint at any position along the lap length,

To þ Ti ¼ Nx: ð10Þ

In Equation (10), Nx is the applied load (in units of force per unit
length). The shear stress in the adhesive is defined as

ta ¼ Ga

taðxÞ
uoa � uiað Þ; ð11Þ

where Ga is the shear modulus of the adhesive, and ta(x) is the
x-dependent adhesive thickness. Taking the first derivative of
Equation (11) with respect to x results in

dta
dx

ta þ ta
dta
dx

¼ Ga
duoa

dx
� duia

dx

� �
: ð12Þ

Combining Equation (12) with Equations (7) through (10) results in
a second-order differential equation governing the load carried by the
outer adherend:

d2To

dx2
þ 1

taa2
� dta
dx

� dTo

dx
� l2

a2
To þ

Co

a2
¼ 0; ð13Þ

with grouped terms l2, a2, and Co defined as

l2 ¼ Ga

ta

1

Eiti
þ 1

Eoto

� �
ð14Þ

a2 ¼ 1þGa

ta

ti
4Gi

þ to
4Go

� �
ð15Þ

Co ¼
GaNx

tatiEi
ð16Þ

Note that the coefficients of Equation (13) contain the varying
bondline thickness ta(x). In general, ta can be any arbitrary function in
x representing the bondline thickness. Solution of the governing
equation, subject to the boundary conditions

Toð�cÞ ¼ 0 ð17Þ
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and

ToðþcÞ ¼ Nx; ð18Þ

determines the in-plane stress resultant To in the outer adherend. The
shear stress in the adhesive can then be calculated using Equation (9).

SOLUTION

For the case of ta being uniform, the coefficients of Equation (13)
become constant, and the term containing first derivatives of ta and To

becomes zero. The closed-form solution to the governing equation is
then

To ¼ Ao coshðla xÞ þ Bo sinhðla xÞ þ
Co

l2
: ð19Þ

The constants Ao and Bo are determined using the two boundary
conditions on the outer adherend, Equations (17) and (18). Using
Equation (9), the solution for shear stress in the adhesive is

tað ÞUBT ¼ l
a

Nx

2
� Co

l2

� �
sinh l

a x
� �

cosh l
a c
� � þNx

2
�
cosh l

a x
� �

sinh l
a c
� �

" #
: ð20Þ

This result is given the subscript UBT to denote a solution for a
joint with uniform bondline thickness (UBT) and therefore constant
coefficients in the governing Equation (13). To remove the effects of
adherend transverse shear flexibility from this solution, Go and Gi can
be set to infinity, causing a¼ 1. The resulting shear stress can be
expressed as

tað ÞVolkersen¼ l
Nx

2
� Co

l2

� �
sinh lxð Þ
cosh lcð Þ þ

Nx

2
� cosh lxð Þ
sinh lcð Þ

� �
: ð21Þ

This result is given the subscript Volkersen [1] to denote that
Equation (21) is the classical solution attributed to that author.

It is possible to use Equations (20) and (21) to compute shear stress
in a joint by simply substituting in a varying bondline thickness
function, ta(x). However, note that these solutions are not rigorously
applicable to cases of varying bondline thickness since they have been
derived based on the assumption of uniform thickness. Solution of
Equation (13) for the case of arbitrarily-varying bond thickness can be
accomplished by using a Finite Difference numerical method. To use
this method, the outer adherend is discretized into n equally sized
regions of length Dx¼ 2c=n, as shown in Figure 4. The governing
equation is represented by approximations to the derivative terms
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contained in the equation. Solution for the value Tm at node m is then
possible using the following difference equation:

Tm ¼
Tmþ1þTm�1

Dx2 þ 1
a2ta

� tmþ1
a �tm�1

að Þ Tmþ1�Tm�1ð Þ
4Dx2 þ Co

a2

2
Dx2 þ

l2

a2

: ð22Þ

Equation (22) can be programmed into a digital computer using any
popular programming language, mathematical software, or even a
spreadsheet program. The boundary conditions, Equations (17) and
(18), are assigned to the end nodes, as shown in Figure 4, and a con-
verged solution is generated after many iterations (typically on the
order of 103). The numerical x-derivative of the solution represented
by Equation (22) is the adhesive shear stress and will be referred to as
the Variable Bondline Thickness (VBT) solution. Since this is a
numerical solution, convergence of the results is an important con-
sideration. A convergence study is discussed in more detail in a later
section of this paper.

EXAMPLE CALCULATIONS

The VBT solution to Equation (13) is demonstrated using several
example calculations. For each example, the VBT prediction is com-
pared with the UBT solution given by Equation (20), the Volkersen [1]
solution given by Equation (21), and with Finite Element Analysis
(FEA) results. The VBT Finite Difference results were produced for a
node spacing of Dx¼ 0.127mm. The linear static FEA results were
obtained using 8-noded plane strain elements CPE8R in the com-
mercial software ABAQUS [13]. In all FEA models, a minimum ele-
ment dimension of 0.0063mm was used to represent the adhesive at
x¼7c. A typical mesh shown in Figure 5 illustrates the degree of
refinement needed at these critical locations in order to accurately
predict stresses in the adhesive. Boundary conditions were applied
such that the mesh in Figure 5 represents half of a symmetric double
lap, or supported single lap joint: constraint in the y- and x-directions
along the bottom and lefthand edges, respectively, and a uniform
pressure applied to the righthand edge.

FIGURE 4 Finite difference discretization of outer adherend.
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Note that while results generated by the UBT and Volkersen
solutions are not rigorously applicable to cases of varying bondline
thickness (since they do not account for the bond thickness variation
during their derivation) these solutions are in closed form and,
therefore, testing if they produce useful results is of practical interest.

Five example calculations are presented, starting with a joint
having uniform bondline thickness, and investigating joints with
increasing severity of thickness variation (decreasing bond thickness
at x¼7c). The variation of bondline thickness ta(x) is represented
using either a quadratic or an exponential function (see Figure 2):

ta ¼ ao þ a1xþ a2x
2; ð23Þ

ta ¼ ao þ a1e
a2x: ð24Þ

For all calculations, the joint parameters listed in Table 1 were
used. These correspond to the quasi-isotropic carbon=epoxy adherend
and adhesive properties used in calculations by Tsai et al. [7].

Case 1: Uniform Bondline Thickness

The first example calculation, Case 1, is a joint having uniform
bondline thickness of 0.152mm. Results of the VBT solution are
compared with the UBT, Volkersen, and FEA predictions in Figure 6.
Note that results are normalized with respect to average shear stress,
which is the applied load divided by the overlap length,

tave ¼
Nx

2c
: ð25Þ

The VBT and UBT solutions are identical for uniform thickness, as
expected. The FEA results were obtained from nodes along the adhe-
sive midplane.

TABLE 1 Joint Parameters for Example Calculations

Parameter Value

Adherends—quasi-isotropic carbon=epoxy
In-plane Young’s modulus, Ei and Eo 50GPa
Transverse shear modulus, Gi and Go 3.80GPa
Thickness, ti and to 1.0mm

Adhesive shear modulus, Ga 0.91GPa
Bond overlap length, 2c 12.7mm
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Cases 2 and 3: Quadratic Thickness Variation

A quadratic polynomial, Equation (23), is used to represent the var-
iation of bondline thickness. Two cases of increasing severity of bond
thickness variation were investigated. These cases analyze the effect
of one end (x¼7c) getting thinner while the other end (x¼ c) remains
the original 0.152 mm (per Case 1). At x¼7c, the bondline thickness
is 0.051mm for Case 2, and 0.025mm for Case 3. In both cases, the
slope, dta=dx, at x¼ c was zero.

The VBT, UBT, Volkersen, and FEA predictions are compared with
each other in Figures 7 and 8 for Cases 2 and 3, respectively. In both of
these cases, the shear stress at x¼7c is predicted to increase sig-
nificantly, in comparison with the uniform thickness case.

Cases 4 and 5: Exponential Thickness Variation

The 0.051 to 0.152mm thickness variation (per quadratic Case 2) is
investigated further by assuming exponential functions to represent
the bondline thickness. The thickness function fitting parameters
were chosen for these two cases to result in increasingly larger slope
dta=dx at x¼7c. In Case 2 (quadratic), the slope is 0.016. In Cases 4
and 5, the slopes are 0.032 and 0.064, respectively.

The results for these cases are similar to the results plotted in
Figure 7 for Case 2, and therefore are not plotted. However, the value
of peak shear stress at x¼7c was found to increase slightly with
increasing initial slope. These results are summarized, together with
the results from all cases, in Table 2.

DISCUSSION

While the results presented in Table 2 and in Figures 6 to 8 are specific
to the joint parameters listed in Table 1, they illustrate some general
features. As expected, the maximum value of shear stress in the
adhesive increases with severity of thickness imperfection. A range of
maximum shear stress was predicted by the four methods for each
case analyzed. The FEA is considered to be most accurate since no
simplifying assumptions (e.g., shear lag) were made. Except in the
case of the uniform joint, the VBT and UBT predictions tended to
predict values of maximum shear stress that are lower than the FEA
results. In all cases, the Volkersen predictions were much higher (over
44%) than the FEA results. The VBT predictions were the closest in
value, relative to the FEA results, with increasing ‘‘error’’ as the
bondline got thinner. These observations indicate that the VBT and
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UBT solutions, which account for adherend transverse shear
deformation, tend to provide an overcorrection to the shear stress
prediction.

For these case examples investigated, the UBT and VBT predictions
were quite close to each other, within 11%, with the tendency to
diverge for cases with higher slopes dta=dx at x¼7c. Observe in the
governing Equation (13) that when dta=dx approaches zero, the VBT
governing equation approaches that of the UBT. Note in Table 2 that
the UBT and Volkersen solutions for cases 2, 4, and 5 each predict the
same peak shear stress for ta(7c)¼ 0.051mm because they are
insensitive to the effect of slope. The reason for this insensitivity is
that they are mathematically incorrect for the case of varying bond-
line, i.e., their derivations did not retain the first derivatives of ta and
To. Another point to note is that the UBT and Volkersen solutions,
when applied to joints with varying bondline thickness, produce shear
stress profiles that do not equilibrate with the applied load, i.e., the
integral of the shear stress from x¼7c to þ c does not equal the
average shear stress Nx=2c. Despite these points, in joints having
practical geometry, the magnitude of possible slope dta=dx will be
relatively small, and as Figures 7 and 8 show, the UBT formula,
Equation (20), can be used to obtain a quick solution. As mentioned
before, the Volkersen predictions were always greater than the FEA
results. Therefore, both the UBT and Volkersen solutions can be
considered together as lower and upper bounding predictions,
respectively.

Peel stress, while not predicted by the VBT solution, can be calcu-
lated using FEA. In Figure 9, plots of peel stress for Cases 1 and 2
show that the peak peel stress at x¼7c is much higher for the varying
thickness Case 2 than for the uniform thickness Case 1. Towards x¼ c,
the FEA results for the two cases are identical due to the joint

TABLE 2 Comparison of VBT, UBT, and Volkersen Predictions with FEA
Results

Case
no.

ta(7c)
(mm)

ta(c)
(mm) dta

dx ð�cÞ
ta
Profile

tmax=tave at x¼7c (% difference from FEA)

FEA VBT UBT Volkersen

1 0.152 0.152 0 Unif. 2.16 2.36 (þ9.3%) 2.37 (þ9.7%) 3.12 (þ44%)
2 0.051 0.152 0.016 Quad. 3.52 3.1 (712%) 2.95 (716%) 5.37 (þ53%)
3 0.025 0.152 0.020 Quad 4.71 3.40 (728%) 3.19 (732%) 7.60 (þ61%)
4 0.051 0.152 0.032 Expon. 3.56 3.18 (711%) 2.95 (717%) 5.37 (þ51%)
5 0.051 0.152 0.064 Expon. 3.60 3.29 (78.6%) 2.95 (718%) 5.37 (þ49%)
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geometry being identical in that region. The significantly higher peel
stress at x¼7c for Case 2 is a thickness-based effect, rather than a
thickness gradient dta=dx effect, since gradients of shear stress are
generally steeper for thinner (uniform) bondlines; gradients in shear
stress are directly related to peel stress. A truly accurate calculation of
failure in a bonded joint needs to account for both the peel stress and
shear stress. However, since linearly elastic calculations not
accounting for adhesive ductility are generally much more
conservative than when plasticity is accounted for [14], analysis
based only on shear stress can be considered as adequate for design
calculations.

A final note on convergence of the Finite Difference calculations is
needed. All results presented were computed for a node spacing of
0.127mm, with a stopping condition of 1075. This stopping condition
applies to the difference in values of To calculated between iteration
steps. If values are found greater than 1075 anywhere in the solution
domain, another iteration is executed. Several thousand iterations are
typically needed to achieve a converged solution. Convergence studies
show that this combination of stopping condition and node spacing
produces results that are less than 1% lower than results produced
when an order of magnitude smaller node spacing is used. Addition-
ally, relaxing the stopping condition to 1073 has been found to result
in less than 0.5% change in the predicted peak shear stress. Since the
VBT predictions are numerical-based, this type of convergence check
of the solutions must always be done.

DESIGNING FOR BONDLINE THICKNESS VARIATION

In the manufacture of joints, it is very difficult to achieve uniform
bondline thickness geometry, particularly for large-scale bonded
assemblies. Therefore, it must be assumed that thickness imperfec-
tions will exist, the degree of which can be ascertained on the manu-
facturing floor. Alternatively, for quality control purposes, it is
desirable for a range of bondline thickness imperfection acceptance
limits to be established even before parts are produced.

Using the VBT solution derived herein, joints can be designed to
account for thickness imperfections. Of interest is: how much of an
increase in shear stress occurs for a joint with thinning bondline
relative to a joint having uniform bondline (assumed to be designed
geometry)? To answer this question, a series of joints were analyzed,
starting with a uniform thickness joint, and progressively decreasing
the bondline thickness ta(7c) at x¼7c (see Figure 2). In each joint, the
bondline thickness ta(c) remained the same at x¼ c. As summarized in
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Table 2, higher peak shear stress values were predicted for joints with
thinning bondline. These higher stresses were compared with the peak
stress for the uniform thickness case and are plotted using the func-
tional form derived from the UBT solution, Equation (20):

t1
tunif

� a1
aunif

¼ f � t1
tunif

� ��1
2

ð26Þ

In Equation (26) t1 is the peak shear stress in the imperfect joint at
x¼7c, while tunif is the peak shear stress for the corresponding uni-
form joint (design-intended geometry). a1 and aunif are the nondimen-
sional transverse shear stiffness geometric=material parameters given
by Equation (15) corresponding to thickness t1¼ ta(7c) and
tunif¼ ta(c), respectively. f is a nondimensional nonlinear parameter
that is a function of all the joint material and geometric parameters.

The effect of each parameter on f in Equation (26) was studied by
varying each parameter individually over a wide range of values. By
this process, a bounding set of extreme parameter values were
determined that gives an upper and lower bound of the function f.
Table 3 lists the parameters that influence f together with upper and
lower bounding values. The column of up and down arrows indicates
in what manner increasing values of the parameter cause changes in f.
For example, increasing values of bond overlap length 2c were found to
decrease values of f. An exception was found for the adherend thick-
ness producing upper bound values of f. While thicker adherends
resulted in a monotonic decrease in f, a unique value of ti and to exists
for a given choice of other parameter values, such that f is maximum.

TABLE 3 Extreme Parameter Values Giving Upper and Lower Bounds for f

Parameter
Effect of increasing

parameter on f
Upper
bound

Lower
bound

Adherends
In-plane Young’s modulus, Ei and Eo " 207GPa 6.98GPa
Transverse shear modulus, Gi and Go " 80.3GPa 3.86GPa
Thickness, ti and to # 0.508mm* 12.7mm

Adhesive
Shear modulus, Ga # 0.698GPa 2.10GPa
Uniform joint thickness, tunif " 1.27 mm 0.127mm

Bond overlap length, 2c # 10.2mm 102mm

*Decreasing ti and to did not monotonically give higher f. Value used is unique for
given choice of other parameters.
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The parameters listed in Table 3 were used to compute ratios of
predicted peak shear stress in imperfect joints compared with peak
shear stress in joints having uniform bondline. This ratio, following
the form of Equation (26), are plotted in Figure 10 as a function of
thickness imperfection, t1=tunif. When t1=tunif ¼ 1, the joint has uni-
form thickness and therefore there is no increase in peak shear
stress. As the joint thins at x¼7c, higher peak shear stresses are
predicted. Values chosen in Table 3 reflect a realistic range of para-
meter values. For example, in the upper bound column a high
adherend Young’s modulus is desired, so steel was chosen as the
material, giving a value of 207 GPa. Also plotted in Figure 10 is
the case for f assumed to have a value of unity (f¼ 1). Comparison
with f computed from lower bounding parameter values indicates the
f¼ 1 case to be a minimum.

Figure 10 has been presented in a manner facilitating design cal-
culation of stresses in bonded joints having localized thinning. For a
given range of expected thickness imperfection, t1=tunif, upper and
lower bounding values of t1a1=tunifaunif can be read off from the vertical
axis of Figure 10. These values effectively act as ‘‘stress concentration
factors’’ that account for thickness imperfection severity. For most
practical joints, the bond overlap length 2c will be relatively long such
that the shear stress peaks at the overlap ends do not influence each
other. In these cases, Figure 10 can be used to evaluate joints having
thinning at both overlap ends. For example, the joint shown in Figure 1
varies from 0.15mm at the center to 0.04mm at the ends. The
intended thickness for this joint was 0.15mm, so a thickness imper-
fection of t1=tunif ¼ 0.27 exists. Using Figure 8, t1a1=tunifaunif ranges
between 1.9 to 2.4.

CONCLUSIONS

Relative to a joint with uniform bondline thickness, the adhesive shear
stress dramatically increases when the adhesive bondline thins at the
joint ends, i.e., at x¼�c. To predict this increase, a shear lag-based
analysis was developed that predicts the adhesive shear stress and
accounts for varying bondline thickness. In the derived differential
equation found to govern this problem, varying bondline thickness
appears as a term containing the first derivative of bondline thickness,
dta=dx. Solution to this governing equation, referred to as the VBT
solution, was found to be accurate relative to FEA results for cases of
moderate bondline thinning. The VBT solution tended to underpredict
the FEA predictions by up to 28% for the cases studied.
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The capabilities of a closed-form uniform bondline thickness (UBT)
solution, and the classical Volkersen solution were investigated. The
UBT solution, while close to the more accurate VBT solution, tended to
underpredict the FEA results even more. The UBT and VBT solutions
matched well for cases of moderate thickness slope, dta=dx. Based on
the case study results, a slope of dta=dx< 0.064 resulted in less than
20% underprediction (relative to FEA) by the UBT solution, and less
than 9% underprediction by the VBT solution. The UBT solution, since
it is in closed form, is desirable for quick solutions and can be used
with acceptable accuracy for cases of moderate thickness slope.

Since the Volkersen solution greatly overpredicted the FEA results
(up to 61%) and the UBTconsistently underpredicts, these two analysis
can be used to obtain, in closed-form, upper and lower bounding pre-
dictions of the increase in adhesive shear stress due to thickness
imperfection. Alternatively, a ‘‘stress concentration factor’’ chart (Fig-
ure 10) was presented that summarized a series of VBT solutions that
were created using parameter sets such that extreme ranges in adhe-
sive stress increase were predicted. This chart would give more tightly-
bounding upper and lower bound predictions than the UBT and
Volkersen calculations, and can be used to assess quickly the effects of
thickness imperfection severity on the peak adhesive shear stress.
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